Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J STEM Educ ; 10(1): 19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915857

RESUMEN

Background: Much of researchers' efforts to foster wider implementation of educational innovations in STEM has focused on understanding and facilitating the implementation efforts of faculty. However, student engagement in blended learning and other innovations relies heavily on students' self-directed learning behaviors, implying that students are likely key actors in the implementation process. This paper explores the ways in which engineering students at multiple institutions experience the self-directed selection and implementation of blended learning resources in the context of their own studies. To accomplish this, it adopts a research perspective informed by Actor-Network Theory, allowing students themselves to be perceived as individual actors and implementors rather than a population that is implemented upon. Results: A thematic analysis was conducted in two parts. First, analysis identified sets of themes unique to the student experience at four participant institutions. Then, a second round of analysis identified and explored a subset of key actors represented in students' reported experiences across all institutions. The findings show clear similarities and differences in students' experiences of blended learning across the four institutions, with many themes echoing or building upon the results of prior research. Distinct institutional traits, the actions of the instructors, the components of the blended learning environment, and the unique needs and preferences of the students themselves all helped to shape students' self-directed learning experiences. Students' engagement decisions and subsequent implementations of blended learning resulted in personally appropriate, perhaps even idiosyncratic, forms of engagement with their innovative learning opportunities. Conclusion: The institutional implementation of blended learning, and perhaps other educational innovations, relies in part on the self-directed decision-making of individual students. This suggests that instructors too hold an additional responsibility: to act as facilitators of their students' implementation processes and as catalysts for growth and change in students' learning behaviors. Developing a greater understanding of students' implementation behaviors could inform the future implementation efforts of faculty and better empower students to succeed in the innovative classroom.

2.
Front Immunol ; 13: 1032537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582226

RESUMEN

T cells expressing a simian immunodeficiency (SIV)-specific chimeric antigen receptor (CAR) and the follicular homing molecule, CXCR5, were infused into antiretroviral therapy (ART) suppressed, SIV-infected rhesus macaques to assess their ability to localize to the lymphoid follicle and control the virus upon ART interruption. While the cells showed evidence of functionality, they failed to persist in the animals beyond 28 days. Development of anti-CAR antibodies could be responsible for the lack of persistence. Potential antigenic sites on the anti-SIV CAR used in these studies included domains 1 and 2 of CD4, the carbohydrate recognition domain (CRD) of mannose-binding lectin (MBL), and an extracellular domain of the costimulatory molecule, CD28, along with short linker sequences. Using a flow cytometry based assay and target cells expressing the CAR/CXCR5 construct, we examined the serum of the CD4-MBL CAR/CXCR5-T cell treated animals to determine that the animals had developed an anti-CAR antibody response after infusion. Binding sites for the anti-CAR antibodies were identified by using alternative CARs transduced into target cells and by preincubation of the target cells with a CD4 blocking antibody. All of the treated animals developed antibodies in their serum that bound to CD4-MBL CAR/CXCR5 T cells and the majority were capable of inducing an ADCC response. The CD4 antibody-blocking assay suggests that the dominant immunogenic components of this CAR are the CD4 domains with a possible additional site of the CD28 domain with its linker. This study shows that an anti-drug antibody (ADA) response can occur even when using self-proteins, likely due to novel epitopes created by abridged self-proteins and/or the self-domain of the CAR connection to a small non-self linker. While in our study, there was no statistically significant correlation between the ADA response and the persistence of the CD4-MBL CAR/CXCR5-T cells in rhesus macaques, these findings suggest that the development of an ADA response could impact the long-term persistence of self-based CAR immunotherapies.


Asunto(s)
Inmunoterapia , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Anticuerpos/uso terapéutico , Formación de Anticuerpos , Antígenos CD28 , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios
3.
Immunohorizons ; 6(10): 693-704, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220186

RESUMEN

Despite mounting a robust antiviral CD8 T cell response to HIV infection, most infected individuals are unable to control HIV viral load without antiretroviral therapy (ART). Chimeric Ag receptor (CAR) T cell treatment is under intensive investigation as an alternative therapy for ART-free remission of chronic HIV infection. However, achieving durable remission of HIV will require a successful balance between CAR T cell effector function and persistence. CAR T cells with CD28 costimulatory domains have robust effector function but limited persistence in vivo, whereas CAR T cells with 4-1BB costimulatory domains present a more undifferentiated phenotype and greater in vivo persistence. We compared the in vitro phenotype and function of rhesus macaque and human CAR T cells that contained either the CD28 or 4-1BB costimulatory domain; both constructs also included CARs that are bispecific for gp120 of HIV or SIV and the CXCR5 moiety to promote in vivo homing of CAR/CXCR5 T cells to B cell follicles. Cells were transduced using a gammaretroviral vector and evaluated using flow cytometry. 4-1BB-CAR/CXCR5 T cells were phenotypically distinct from CD28-CAR/CXCR5 T cells and showed increased expression of CAR and CD95. Importantly, both CD28- and 4-1BB-CAR/CXCR5 T cells retained equal capacity to recognize and suppress SIV in vitro. These studies provide new insights into rhesus macaque and human 4-1BB- and CD28-bearing CAR T cells.


Asunto(s)
Infecciones por VIH , Receptores Quiméricos de Antígenos , Virus de la Inmunodeficiencia de los Simios , Animales , Antivirales , Antígenos CD28 , Infecciones por VIH/terapia , Humanos , Macaca mulatta
4.
PLoS Pathog ; 18(2): e1009831, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130312

RESUMEN

During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA+ cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the ileum, rectum, and lung, and no cells were detected in the bone marrow, liver, or brain. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV-viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores CXCR5/inmunología , Receptores Quiméricos de Antígenos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/inmunología , Centro Germinal/inmunología , Humanos , Inmunoterapia , Ganglios Linfáticos/inmunología , Macaca mulatta , ARN Viral , Receptores CXCR5/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Carga Viral
5.
Methods Mol Biol ; 2421: 171-185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34870819

RESUMEN

HIV-specific chimeric antigen receptor (CAR) T cells that target lymphoid follicles have the potential to functionally cure HIV infection. CD8+ T cells, NK cells, or peripheral blood mononuclear cells (PBMC) may be modified to express HIV-specific CARs as well as follicular homing molecules such as CXCR5 to target the virally infected T follicular helper cells that concentrate within B cell follicles during HIV infection. This chapter outlines methods utilizing a simian immunodeficiency virus (SIV) rhesus macaque model of HIV to produce transduced T cells from primary PBMCs. Methods are presented for production of an SIV-specific CAR/CXCR5-encoding retrovirus used to transduce primary rhesus macaque PBMCs. Procedures to evaluate the functionality of the expanded CAR/CXCR5 T cells in vitro and ex vivo are also presented. An in vitro migration assay determines the ability of the T cells expressing CAR/CXCR5 to migrate to the CXCR5 ligand CXCL13, while an ex vivo migration assay allows measurement of the transduced T cell migration into the B cell follicle. Antiviral activity of the CAR/CXCR5 transduced T cells is determined using a viral suppression assay. These methods can be used to produce T cells for immunotherapy in SIV-infected rhesus macaques and to evaluate the functionality of the cells prior to infusion. Similar procedures can be used to produce HIV-specific CAR/CXCR5 T cells.


Asunto(s)
Virus de la Inmunodeficiencia de los Simios , Linfocitos T , Animales , Linfocitos T CD8-positivos , Infecciones por VIH , Leucocitos Mononucleares , Macaca mulatta , Receptores CXCR5/genética
6.
Front Cell Infect Microbiol ; 11: 654396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937098

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) is the causative agent of Kaposi's sarcoma and two B cell lymphoproliferative disorders: primary effusion lymphoma and KSHV-associated multicentric Castleman's disease. These distinct pathologies involve different infected cell types. In Kaposi's sarcoma, the virus is harbored in spindle-like tumor cells of endothelial origin, in contrast with the two pathologies of B cells. These distinctions highlight the importance of elucidating potential differences in the mechanisms of infection for these alternate target cell types and in the properties of virus generated from each. To date there is no available chronically KSHV-infected cell line of endothelial phenotype that can be activated by the viral lytic switch protein to transition from latency to lytic replication and production of infectious virus. To advance these efforts, we engineered a novel KSHV chronically infected derivative of TIME (telomerase immortalized endothelial) cells harboring a previously reported recombinant virus (rKSHV.219) and the viral replication and transcription activator (RTA) gene under the control of a doxycycline-inducible system. The resulting cells (designated iTIME.219) maintained latent virus as indicated by expression of constitutively expressed (eGFP) but not a lytic phase (RFP) reporter gene and can be sustained under long term selection. When exposed to either sodium butyrate or doxycycline, the cells were activated to lytic replication as evidenced by the expression of RFP and KSHV lytic genes and release of large quantities of infectious virus. The identity of the iTIME.219 cells was confirmed both phenotypically (specific antigen expression) and genetically (short tandem repeat analysis), and cell stability was maintained following repeated serial passage. These results suggest the potential utility of the iTime.219 cells in future studies of the KSHV replication in endothelial cells, properties of virus generated from this biologically relevant cell type and mechanisms underlying KSHV tropism and pathogenesis.


Asunto(s)
Herpesvirus Humano 8 , Línea Celular , Células Endoteliales , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Latencia del Virus , Liberación del Virus , Replicación Viral
7.
PLoS One ; 16(3): e0248973, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33752225

RESUMEN

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/terapia , VIH-1/fisiología , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Lavado Broncoalveolar , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/virología , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Linfocitos T/inmunología , Carga Viral/inmunología
8.
PLoS One ; 16(1): e0245024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411835

RESUMEN

Ebola virus (EBOV), a member of the mononegaviral family Filoviridae, causes severe disease associated with high lethality in humans. Despite enormous progress in development of EBOV medical countermeasures, no anti-EBOV treatment has been approved. We designed an immunotoxin in which a single-chain variable region fragment of the EBOV glycoprotein-specific monoclonal antibody 6D8 was fused to the effector domains of Pseudomonas aeruginosa exotoxin A (PE38). This immunotoxin, 6D8-PE38, bound specifically to cells expressing EBOV glycoproteins. Importantly, 6D8-PE38 targeted EBOV-infected cells, as evidenced by inhibition of infectious EBOV production from infected cells, including primary human macrophages. The data presented here provide a proof of concept for immunotoxin-based targeted killing of infected cells as a potential antiviral intervention for Ebola virus disease.


Asunto(s)
Ebolavirus/efectos de los fármacos , Glicoproteínas/inmunología , Inmunotoxinas/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular Tumoral , Ebolavirus/inmunología , Humanos , Proteínas del Envoltorio Viral/inmunología
9.
Artículo en Inglés | MEDLINE | ID: mdl-32523897

RESUMEN

Anti-HIV chimeric antigen receptors (CARs) promote direct killing of infected cells, thus offering a therapeutic approach aimed at durable suppression of infection emerging from viral reservoirs. CD4-based CARs represent a favored option, since they target the essential conserved primary receptor binding site on the HIV envelope glycoprotein (Env). We have previously shown that adding a second Env-binding moiety, such as the carbohydrate recognition domain of human mannose-binding lectin (MBL) that recognizes the highly conserved oligomannose patch on gp120, increases CAR potency in an in vitro HIV suppression assay; moreover it reduces the undesired capacity for the CD4 of the CAR molecule to act as an entry receptor, thereby rendering CAR-expressing CD8+ T cells susceptible to infection. Here, we further improve the bispecific CD4-MBL CAR by adding a third targeting moiety against a distinct conserved Env determinant, i.e. a polypeptide sequence derived from the N-terminus of the HIV coreceptor CCR5. The trispecific CD4-MBL-R5Nt CAR displays enhanced in vitro anti-HIV potency compared to the CD4-MBL CAR, as well as undetectable HIV entry receptor activity. The high anti-HIV potency of the CD4-MBL-R5Nt CAR, coupled with its all-human composition and absence of immunogenic variable regions associated with antibody-based CARs, offer promise for the trispecific construct in therapeutic approaches seeking durable drug-free HIV remission.


Asunto(s)
Infecciones por VIH , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T CD8-positivos/metabolismo , Infecciones por VIH/terapia , VIH-1 , Humanos , Unión Proteica , Receptores CCR5/metabolismo , Receptores Quiméricos de Antígenos/metabolismo
10.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32161179

RESUMEN

The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought.IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


Asunto(s)
Células Dendríticas Foliculares/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Receptores Quiméricos de Antígenos/inmunología , Anticuerpos Monoclonales , Anticuerpos Antivirales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Dendríticas , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos Mononucleares/virología , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/genética , Latencia del Virus/fisiología
11.
Mol Ther Methods Clin Dev ; 16: 1-10, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-31673565

RESUMEN

Chimeric antigen receptor (CAR)-T cells show great promise in treating cancers and viral infections. However, most protocols developed to expand T cells require relatively long periods of time in culture, potentially leading to progression toward populations of terminally differentiated effector memory cells. Here, we describe in detail a 9-day protocol for CAR gene transduction and expansion of primary rhesus macaque peripheral blood mononuclear cells (PBMCs). Cells produced and expanded with this method show high levels of viability, high levels of co-expression of two transduced genes, retention of the central memory phenotype, and sufficient quantity for immunotherapeutic infusion of 1-2 × 108 cells/kg in a 10 kg rhesus macaque. This 9-day protocol may be broadly used for CAR-T cell and other T cell immunotherapy approaches to decrease culture time and increase maintenance of central memory populations.

12.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567992

RESUMEN

B lymphocytes are the major cellular reservoir in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV), and the virus is etiologically linked to two B cell lymphoproliferative disorders. We previously described the MC116 human B cell line as a KSHV-susceptible model to overcome the paradoxical refractoriness of B cell lines to experimental KSHV infection. Here, using monoclonal antibody inhibition and a deletion mutant virus, we demonstrate that the KSHV virion glycoprotein K8.1A is critical for infection of MC116, as well as tonsillar B cells; in contrast, we confirm previous reports on the dispensability of the glycoprotein for infection of primary endothelial cells and other commonly studied non-B cell targets. Surprisingly, we found that the role of K8.1A in B cell infection is independent of its only known biochemical activity of binding to surface heparan sulfate, suggesting the possible involvement of an additional molecular interaction(s). Our finding that K8.1A is a critical determinant for KSHV B cell tropism parallels the importance of proteins encoded by positionally homologous genes for the cell tropism of other gammaherpesviruses.IMPORTANCE Elucidating the molecular mechanisms by which KSHV infects B lymphocytes is critical for understanding how the virus establishes lifelong persistence in infected people, in whom it can cause life-threatening B cell lymphoproliferative disease. Here, we show that K8.1A, a KSHV-encoded glycoprotein on the surfaces of the virus particles, is critical for infection of B cells. This finding stands in marked contrast to previous studies with non-B lymphoid cell types, for which K8.1A is known to be dispensable. We also show that the required function of K8.1A in B cell infection does not involve its binding to cell surface heparan sulfate, the only known biochemical activity of the glycoprotein. The discovery of this critical role of K8.1A in KSHV B cell tropism opens promising new avenues to unravel the complex mechanisms underlying infection and disease caused by this viral human pathogen.


Asunto(s)
Linfocitos B/metabolismo , Glicoproteínas/metabolismo , Heparitina Sulfato/metabolismo , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Tropismo/fisiología , Proteínas Virales/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Células Endoteliales/metabolismo , Humanos
13.
Cell Host Microbe ; 23(6): 832-844.e6, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29902444

RESUMEN

The HIV-1 envelope (Env) spike is a trimer of gp120/gp41 heterodimers that mediates viral entry. Binding to CD4 on the host cell membrane is the first essential step for infection but disrupts the native antigenic state of Env, posing a key obstacle to vaccine development. We locked the HIV-1 Env trimer in a pre-fusion configuration, resulting in impaired CD4 binding and enhanced binding to broadly neutralizing antibodies. This design was achieved via structure-guided introduction of neo-disulfide bonds bridging the gp120 inner and outer domains and was successfully applied to soluble trimers and native gp160 from different HIV-1 clades. Crystallization illustrated the structural basis for CD4-binding impairment. Immunization of rabbits with locked trimers from two different clades elicited neutralizing antibodies against tier-2 viruses with a repaired glycan shield regardless of treatment with a functional CD4 mimic. Thus, interdomain stabilization provides a widely applicable template for the design of Env-based HIV-1 vaccines.


Asunto(s)
Antígenos CD4/inmunología , Antígenos CD4/metabolismo , VIH-1/inmunología , Unión Proteica/inmunología , Dominios Proteicos , Estabilidad Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Femenino , Células HEK293 , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/química , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteínas gp160 de Envoltorio del VIH/química , Proteínas gp160 de Envoltorio del VIH/inmunología , Proteínas gp160 de Envoltorio del VIH/metabolismo , VIH-1/genética , VIH-1/patogenicidad , Humanos , Inmunización , Modelos Moleculares , Conformación Proteica , Dominios Proteicos/inmunología , Conejos , Internalización del Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
14.
Front Immunol ; 9: 492, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616024

RESUMEN

There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh) located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV)-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh) cells using antiviral chimeric antigen receptor (CAR) T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure) of HIV and SIV infections.


Asunto(s)
Linfocitos B/inmunología , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T/inmunología , Transducción Genética , Replicación Viral/inmunología , Animales , Linfocitos B/patología , Quimiocina CXCL13/genética , Quimiocina CXCL13/inmunología , Gammaretrovirus , VIH-1/genética , VIH-1/inmunología , Macaca mulatta , Receptores CXCR5/genética , Receptores CXCR5/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Linfocitos T/patología , Replicación Viral/genética
15.
Cytotherapy ; 20(3): 407-419, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29306566

RESUMEN

BACKGROUND AIMS: Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions. METHODS: We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression. RESULTS: T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR. DISCUSSION: These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , Receptores Quiméricos de Antígenos/metabolismo , Antígenos CD/metabolismo , Sitios de Unión , Linfocitos T CD8-positivos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Técnicas de Cocultivo , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/terapia , VIH-1/fisiología , Humanos , Lectinas Tipo C/metabolismo , Manosa , Polisacáridos/química , Polisacáridos/metabolismo , Ingeniería de Proteínas/métodos , Receptores de Superficie Celular/metabolismo , Receptores Quiméricos de Antígenos/genética , Transducción Genética
16.
AIDS Res Hum Retroviruses ; 32(12): 1187-1197, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27771962

RESUMEN

The purpose of this study was to assess humoral antibody responses as a function of disease progression (DP) in a well-defined HIV+ cohort. We quantified antibodies to HIV-1 gp120, Gag, and CD4 receptor by enzyme-linked immunosorbent assay in sera from a cohort of 97 HIV+ subjects at defined stages of DP. We also measured antibody-dependent cellular cytotoxicity (ADCC) as a function of the clinical status of the patients. We purified antibodies to CD4 and gp120 and assessed them for specificity, ability to block gp120 binding to target cells, ability to block virus infection, and ability to facilitate ADCC. All of the HIV+ patient samples were positive for antibodies to HIV gp120 and p24 and 80% showed evidence of hypergammaglobulinemia. Approximately 10% of cohort members were positive for antibodies to CD4, but we noted no significant correlation relevant to DP. There were statistically significant differences between the groups concerning the level of humoral response to gp120 and Gag. However, we observed no distinction in ability of anti-gp120 antibodies purified from each group to neutralize infection. In addition, there was a statistically significant difference in ADCC, with elite controllers exhibiting significantly lower levels of ADCC than the other five groups. We detected IgA anti-gp120 antibodies, but did not correlate their presence with either DP or ADCC levels. The results are consistent with the interpretation that the humoral antibody response to the antigens assessed here represents a signature of the level of viremia but does not correlate with clinical status of HIV infection.


Asunto(s)
Formación de Anticuerpos , Autoanticuerpos/sangre , Antígenos CD4/inmunología , Progresión de la Enfermedad , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Autoanticuerpos/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/patología , Humanos , Masculino , Estudios Prospectivos , Factores de Tiempo
17.
World J Hepatol ; 8(19): 796-814, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27429716

RESUMEN

AIM: To determine if calnexin (CANX), RAB1 and alpha-tubulin were involved in the production of hepatitis C virus (HCV) particles by baby hamster kidney-West Nile virus (BHK-WNV) cells. METHODS: Using a siRNA-based approach complemented with immuno-fluorescence confocal microscope and Western blot studies, we examined the roles of CANX, RAB1 and alpha-tubulin in the production of HCV particles by permissive BHK-WNV cells expressing HCV structural proteins or the full-length genome of HCV genotype 1a. Immuno-fluorescence studies in producer cells were performed with monoclonal antibodies against HCV structural proteins, as well as immunoglobulin from the serum of a patient recently cured from an HCV infection of same genotype. The cellular compartment stained by the serum immunoglobulin was also observed in thin section transmission electron microscopy. These findings were compared with the JFH-1 strain/Huh-7.5 cell model. RESULTS: We found that CANX was necessary for the production of HCV particles by BHK-WNV cells. This process involved the recruitment of a subset of HCV proteins, detected by immunoglobulin of an HCV-cured patient, in a compartment of rearranged membranes bypassing the endoplasmic reticulum-Golgi intermediary compartment and surrounded by mitochondria. It also involved the maturation of N-linked glycans on HCV envelope proteins, which was required for assembly and/or secretion of HCV particles. The formation of this specialized compartment required RAB1; upon expression of HCV structural genes, this compartment developed large vesicles with viral particles. RAB1 and alpha-tubulin were required for the release of HCV particles. These cellular factors were also involved in the production of HCVcc in the JFH-1 strain/Huh-7.5 cell system, which involves HCV RNA replication. The secretion of HCV particles by BHK-WNV cells presents similarities with a pathway involving caspase-1; a caspase-1 inhibitor was found to suppress the production of HCV particles from a full-length genome. CONCLUSION: Prior activity of the WNV subgenomic replicon in BHK-21 cells promoted re-wiring of host factors for the assembly and release of infectious HCV in a caspase-1-dependent mechanism.

18.
Front Immunol ; 6: 283, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106389
19.
Bioinspir Biomim ; 10(3): 036006, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25909394

RESUMEN

Crustaceans contain a great variety of sensilla along their antennules that enable them to sense both hydrodynamic and chemical stimuli in aquatic environments, and can be used to inspire the design of engineered sensing systems. For example, along the antennule of the freshwater crayfish, Procambarus clarkii, four predominant mechanosensory sensilla morphologies are found. To study their response to upstream flow perturbations, atomic force microscopy was utilized to determine P. clarkii sensilla bending in response to an applied force and a mean torsional stiffness, k(t) = 1 × 10(-12) N m degree(-1) was found. A numerical model was developed to quantify the deformation of the four sensilla morphologies due to flow perturbations within their surrounding fluid. These flow perturbations were intended to mimic predator and ambient fluid movements. Results show that upstream fluid motion causes alterations in velocity near the sensilla, accompanied by corresponding variations in pressure along the sensilla surface. The feathered and filamentous sensilla, which are hydrodynamic sensilla, were found to be highly sensitive to flow perturbations. The beaked and asymmetric sensilla, which are bimodal chemo-mechanoreceptors, were found to be much less sensitive to hydrodynamic disturbances. Results also show that sensilla are most sensitive to fluid movement in the along-axis plane of the antennule, with a sharp drop in sensitivity perpendicular to this axis. This sensitivity agrees well with neural responses measured directly from the paired sensory neurons associated with each sensillum. Greater along-axis sensitivity is likely beneficial for determining the direction of fluid movements, which may be important for both aquatic organisms and biomimetic sensing systems.


Asunto(s)
Astacoidea/fisiología , Mecanotransducción Celular/fisiología , Modelos Biológicos , Sensilos/anatomía & histología , Sensilos/fisiología , Tacto/fisiología , Animales , Fuerza Compresiva/fisiología , Simulación por Computador , Módulo de Elasticidad/fisiología , Estrés Mecánico , Resistencia a la Tracción/fisiología
20.
J Virol ; 89(13): 6685-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25878112

RESUMEN

UNLABELLED: Adoptive transfer of CD8 T cells genetically engineered to express "chimeric antigen receptors" (CARs) represents a potential approach toward an HIV infection "functional cure" whereby durable virologic suppression is sustained after discontinuation of antiretroviral therapy. We describe a novel bispecific CAR in which a CD4 segment is linked to a single-chain variable fragment of the 17b human monoclonal antibody recognizing a highly conserved CD4-induced epitope on gp120 involved in coreceptor binding. We compared a standard CD4 CAR with CD4-17b CARs where the polypeptide linker between the CD4 and 17b moieties is sufficiently long (CD4-35-17b CAR) versus too short (CD4-10-17b) to permit simultaneous binding of the two moieties to a single gp120 subunit. When transduced into a peripheral blood mononuclear cell (PBMC) or T cells thereof, all three CD4-based CARs displayed specific functional activities against HIV-1 Env-expressing target cells, including stimulation of gamma interferon (IFN-γ) release, specific target cell killing, and suppression of HIV-1 pseudovirus production. In assays of spreading infection of PBMCs with genetically diverse HIV-1 primary isolates, the CD4-10-17b CAR displayed enhanced potency compared to the CD4 CAR whereas the CD4-35-17b CAR displayed diminished potency. Importantly, both CD4-17b CARs were devoid of a major undesired activity observed with the CD4 CAR, namely, rendering the transduced CD8(+) T cells susceptible to HIV-1 infection. Likely mechanisms for the superior potency of the CD4-10-17b CAR over the CD4-35-17b CAR include the greater potential of the former to engage in the serial antigen binding required for efficient T cell activation and the ability of two CD4-10-17b molecules to simultaneously bind a single gp120 subunit. IMPORTANCE: HIV research has been energized by prospects for a cure for HIV infection or, at least, for a "functional cure" whereby antiretroviral therapy can be discontinued without virus rebound. This report describes a novel CD4-based "chimeric antigen receptor" (CAR) which, when genetically engineered into T cells, gives them the capability to selectively respond to and kill HIV-infected cells. This CAR displays enhanced features compared to previously described CD4-based CARs, namely, increased potency and avoidance of the undesired rendering of the genetically modified CD8 T cells susceptible to HIV infection. When adoptively transferred back to the individual, the genetically modified T cells will hopefully provide durable killing of infected cells and sustained virus suppression without continued antiretroviral therapy, i.e., a functional cure.


Asunto(s)
Fármacos Anti-VIH/metabolismo , VIH-1/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Receptores de Antígenos/metabolismo , Receptores del VIH/metabolismo , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Unión Proteica , Receptores de Antígenos/genética , Receptores del VIH/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...